E-L coupling efficiency: Difference between revisions

From Bioblast
No edit summary
Line 30: Line 30:
[[File:EPL-free and excess.jpg|right|400px|thumb|[[Gnaiger 2014 MitoPathways |The Blue Book 2014]]: Fig. 2.4.]]
[[File:EPL-free and excess.jpg|right|400px|thumb|[[Gnaiger 2014 MitoPathways |The Blue Book 2014]]: Fig. 2.4.]]
== Coupling control states for ''j<sub>β‰ˆE</sub>'' ==
== Coupling control states for ''j<sub>β‰ˆE</sub>'' ==
::::Β» [[Respiratory state]], [[ETS-competent pathway control state]], [[Electron transfer system]]
::::Β» [[Respiratory state]], [[ET-pathway competent state]], [[Electron transfer system]]
::::* [[Reference state]], ''Z<sub>X</sub>'': [[Image:E.jpg|link=ETS capacity|ET capacity]] [[ET capacity]], ''E'' = ''EΒ΄''-ROX
::::* [[Reference state]], ''Z<sub>X</sub>'': [[Image:E.jpg|link=ET capacity|ET capacity]] [[ET capacity]], ''E'' = ''EΒ΄''-ROX
::::* [[Background state]], ''Y<sub>X</sub>'': [[Image:L.jpg|link=LEAK respiration|LEAK]] [[LEAK respiration]], ''L'' = ''LΒ΄''-ROX
::::* [[Background state]], ''Y<sub>X</sub>'': [[Image:L.jpg|link=LEAK respiration|LEAK]] [[LEAK respiration]], ''L'' = ''LΒ΄''-ROX
::::* [[Metabolic control variable]], ''X=Z<sub>X</sub>-Y<sub>X</sub>'': [[Image:E-L.jpg|50 px|link=Free ETS capacity |Free ETS capacity]] [[Free ET-capacity]], ''β‰ˆE'' = ''E-L''
::::* [[Metabolic control variable]], ''X=Z<sub>X</sub>-Y<sub>X</sub>'': [[Image:E-L.jpg|50 px|link=Free ET-capacity |Free ET-capacity]] [[Free ET-capacity]], ''β‰ˆE'' = ''E-L''




Line 39: Line 39:
::::Β» [[Flux control ratio]], ''FCR'', [[Flux control factor]], ''FCF''
::::Β» [[Flux control ratio]], ''FCR'', [[Flux control factor]], ''FCF''
::::* [[Coupling control ratio]], ''Y<sub>X</sub>/Z<sub>X</sub>'': [[Image:L over E.jpg|50 px|link=LEAK control ratio |LEAK control ratio]] [[LEAK control ratio]] (''L/E'' coupling control ratio), ''L/E''
::::* [[Coupling control ratio]], ''Y<sub>X</sub>/Z<sub>X</sub>'': [[Image:L over E.jpg|50 px|link=LEAK control ratio |LEAK control ratio]] [[LEAK control ratio]] (''L/E'' coupling control ratio), ''L/E''
::::* [[Coupling control factor]], 1-''Y<sub>X</sub>/Z<sub>X</sub>'': [[Image:j--E.jpg|50 px|link=ETS coupling efficiency |ETS coupling efficiency]] [[ETS coupling efficiency]]: ''j<sub>β‰ˆE</sub>'' = ''β‰ˆE/E'' =(''E-L'')/''E'' = 1-''L/E''
::::* [[Coupling control factor]], 1-''Y<sub>X</sub>/Z<sub>X</sub>'': [[Image:j--E.jpg|50 px|link=ET-pathway coupling efficiency |ET-pathway coupling efficiency]] [[ET-pathway coupling efficiency]]: ''j<sub>β‰ˆE</sub>'' = ''β‰ˆE/E'' =(''E-L'')/''E'' = 1-''L/E''




Line 62: Line 62:
:::: [[Image:j--P.jpg|50 px|link=OXPHOS coupling efficiency |OXPHOS coupling efficiency]] [[OXPHOS coupling efficiency]], (''P-L'' or ''β‰ˆP'' control factor): ''j<sub>β‰ˆP</sub>'' = ''β‰ˆP/P'' = (''P-L'')/''P'' = 1-''L/P''
:::: [[Image:j--P.jpg|50 px|link=OXPHOS coupling efficiency |OXPHOS coupling efficiency]] [[OXPHOS coupling efficiency]], (''P-L'' or ''β‰ˆP'' control factor): ''j<sub>β‰ˆP</sub>'' = ''β‰ˆP/P'' = (''P-L'')/''P'' = 1-''L/P''
:::: [[Image:j--R.jpg|50 px|link=ROUTINE coupling efficiency |ROUTINE coupling efficiency]] [[ROUTINE coupling efficiency]]: ''j<sub>β‰ˆR</sub>'' = ''β‰ˆR/R'' =(''R-L'')/''R'' = 1-''L/R''
:::: [[Image:j--R.jpg|50 px|link=ROUTINE coupling efficiency |ROUTINE coupling efficiency]] [[ROUTINE coupling efficiency]]: ''j<sub>β‰ˆR</sub>'' = ''β‰ˆR/R'' =(''R-L'')/''R'' = 1-''L/R''
:::: [[Image:j--E.jpg|50 px|link=ETS coupling efficiency |ETS coupling efficiency]] [[ETS coupling efficiency]], ''E-L'' coupling control factor: ''j<sub>β‰ˆE</sub>'' = ''β‰ˆE/E'' = (''E-L'')/''E'' = 1-''L/E''
:::: [[Image:j--E.jpg|50 px|link=ET-pathway coupling efficiency |ET-pathway coupling efficiency]] [[ET-pathway coupling efficiency]], ''E-L'' coupling control factor: ''j<sub>β‰ˆE</sub>'' = ''β‰ˆE/E'' = (''E-L'')/''E'' = 1-''L/E''


=== Coupling control factors: apparent excess capacity factors ===
=== Coupling control factors: apparent excess capacity factors ===

Revision as of 16:42, 16 October 2017


high-resolution terminology - matching measurements at high-resolution


E-L coupling efficiency

Description

ET-pathway coupling efficiency The ET-pathway coupling efficiency (E-L coupling control factor) is a normalized flux ratio, jβ‰ˆE = β‰ˆE/E = (E-L)/E = 1-L/E. jβ‰ˆE is 0.0 at zero coupling (L=E) and 1.0 at the limit of a fully coupled system (L=0). The background state is the LEAK state which is stimulated to ET-pathway reference state by uncoupler titration. LEAK states LN or LT may be stimulated first by saturating ADP (State P) with subsequent uncoupler titration to State E. The ET-pathway coupling efficiency is based on measurement of a coupling control ratio (LEAK control ratio, L/E), whereas the thermodynamic or ergodynamic efficiency of coupling between ATP production (DT phosphorylation) and oxygen consumption is based on measurement of the output/input flux ratio (~P/O2 ratio) and output/input force ratio (Gibbs force of phosphorylation/Gibbs force of oxidation). Biochemical coupling efficiency is either expressed as the ET-pathway coupling efficiency, jβ‰ˆE, or OXPHOS coupling efficiency, jβ‰ˆP, obtained in a coupling control protocol (phosphorylation control protocol). Β» MiPNet article

Abbreviation: jβ‰ˆE

Reference: Flux control factor


MitoPedia concepts: Respiratory control ratio 


MitoPedia methods: Respirometry 

Biochemical coupling efficiency: from 0 to <1

Publications in the MiPMap
Gnaiger E (2015) Biochemical coupling efficiency: from 0 to <1. Mitochondr Physiol Network 2015-01-18.


OROBOROS (2015) MiPNet

Abstract: Zooming in on biochemical coupling efficiency, jβ‰ˆE compared to jβ‰ˆP.


β€’ O2k-Network Lab: AT Innsbruck Gnaiger E


Labels:




Regulation: Coupling efficiency;uncoupling  Coupling state: LEAK, ET-pathway"ET-pathway" is not in the list (LEAK, ROUTINE, OXPHOS, ET) of allowed values for the "Coupling states" property. 

HRR: Theory 


Quantification of coupling of mitochondrial respiration is a fundamental component of OXPHOS analysis.[1],[2] Biochemical coupling efficiency is distinguished from ergodynamic efficiency.[3],[4],[5]

Coupling control states for jβ‰ˆE

Β» Respiratory state, ET-pathway competent state, Electron transfer system


Flux control ratio and flux control factor

Β» Flux control ratio, FCR, Flux control factor, FCF


Compare

mt-Preparations

OXPHOS coupling efficiency OXPHOS coupling efficiency, P-L control factor: jβ‰ˆP = β‰ˆP/P = (P-L)/P = 1-L/P
netOXPHOS control ratio netOXPHOS control ratio, β‰ˆP/E control ratio: β‰ˆP/E = (P-L)/E
OXPHOS OXPHOS capacity, P = PΒ΄-ROX

Intact cells

ROUTINE coupling efficiency ROUTINE coupling efficiency, (R-L or β‰ˆR control factor): jβ‰ˆR = β‰ˆR/R = (R-L)/R = 1-L/R
netROUTINE control ratio netROUTINE control ratio, β‰ˆR/E control ratio: β‰ˆR/E = (R-L)/E
ROUTINE ROUTINE respiration, R = RΒ΄-ROX


References

  1. ↑ Gnaiger E (2014) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 4th ed. Mitochondr Physiol Network 19.12. OROBOROS MiPNet Publications, Innsbruck:80 pp. Β»Open AccessΒ«
  2. ↑ Gnaiger E. Is respiration uncoupled - noncoupled - dyscoupled? Mitochondr Physiol Network. Β»UncouplerΒ«
  3. ↑ Gnaiger E (1993) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65: 1983-2002. Β»Open AccessΒ«
  4. ↑ Gnaiger E (1993) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Surviving Hypoxia: Mechanisms of Control and Adaptation. Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) CRC Press, Boca Raton, Ann Arbor, London, Tokyo: 77-109. Β»Bioblast AccessΒ«
  5. ↑ Gnaiger E (2015) Cell ergometry: OXPHOS and ET-pathway coupling efficiency. Mitochondr Physiol Network 2015-01-18. Β»Bioblast linkΒ«


MitoPedia: related terms

Coupling control factors: biochemical efficiencies

OXPHOS coupling efficiency OXPHOS coupling efficiency, (P-L or β‰ˆP control factor): jβ‰ˆP = β‰ˆP/P = (P-L)/P = 1-L/P
ROUTINE coupling efficiency ROUTINE coupling efficiency: jβ‰ˆR = β‰ˆR/R =(R-L)/R = 1-L/R
ET-pathway coupling efficiency ET-pathway coupling efficiency, E-L coupling control factor: jβ‰ˆE = β‰ˆE/E = (E-L)/E = 1-L/E

Coupling control factors: apparent excess capacity factors

Excess E-P capacity factor Excess E-P capacity factor, E-P coupling control factor: jExP = (E-P)/E = 1-P/E
Excess E-R capacity factor Excess E-R capacity factor, E-R coupling control factor: jExR = (E-R)/E = 1-R/E

Coupling control ratios

Β» Coupling control ratio
L/P coupling control ratio L/P coupling control ratio: L/P
L/R coupling control ratio L/R coupling control ratio, L/R
LEAK control ratio LEAK control ratio, L/E
OXPHOS control ratio OXPHOS control ratio, P/E
ROUTINE control ratio ROUTINE control ratio, R/E
netOXPHOS control ratio netOXPHOS control ratio, β‰ˆP/E control ratio: β‰ˆP/E = (P-L)/E
netROUTINE control ratio netROUTINE control ratio, β‰ˆR/E control ratio: β‰ˆR/E = (R-L)/E


List of publications: ET-pathway and LEAK

Cookies help us deliver our services. By using our services, you agree to our use of cookies.