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Abstract 
 

 
 
Sophisticated 3D cell culture tissue models 
experienced a boom in the last years and in particular 
human cell culture and 3D respiratory systems 
greatly supported the development of novel drugs 
and vaccines during the SARS-CoV-2 pandemic lately. 
These models provide multiple benefits in terms of 
similarities in differentiation, metabolism, receptor 
expression, polarity, infectivity compared to human 
tissues and thus provide excellent models to study 
very first interactions with the host during pathogen 
entry. Dependent on the experimental approach, the 
use of different 3D models is more beneficial – apical 
out lung organoids for e.g., high content screening 
(HCS) of treatment options, air-liquid interphase 
(ALI) models for e.g., easy incorporation of immune 
cells, screening of epithelial integrity or mucociliary 
clearance. This review will give an overview on the 
models established in our laboratory and on their 
applications. 

https://orcid.org/0000-0002-5888-5118
https://orcid.org/0000-0002-5888-5118
https://orcid.org/0000-0002-5888-5118
mailto:doris.wilflingseder@i-med.ac.at
https://orcid.org/0000-0001-8955-7654
https://orcid.org/0000-0002-7657-329X
https://orcid.org/0000-0002-0507-0513
https://orcid.org/0000-0002-2946-7785


 
  
 

3D modeling SARS-CoV-2 infection 

2 Posch et al (2022) MitoFitPreprints 2022.4 

 

 
1. Introduction 
 

The use of organotypic three-dimensional (3D) cell cultures in basic, translational 
and clinical research is now more popular than ever - rapid development is taking place 
in this area due to modern technologies, availability of induced pluripotent stem cells 
(iPSCs), commercially available and more physiologically relevant primary cells or 
biobanking- opportunities. 

 

Often, these novel approaches use self-assembling 3D organoid or spheroid cultures, 

which offer several advantages over conventional 2D cell cultures. In addition to 3D 

organoid/spheroid cultures, there are other options for 3D cultivation, such as scaffold-

based methods and long-term differentiation within an air-liquid interphase (ALI) for e.g., 

respiratory tissues to mimic the situation in the respiratory tract. 3D culture technologies 

offer a great potential for a more realistic disease modeling in vitro or for testing drugs in 

a personalized way. The simulation of tissues in cell cultures offers the opportunity for 

answering scientific questions that cannot be met using conventional 2D cell culture 

monolayers or animal experiments. Thus, we will here review current progress of 

respiratory tissue model optimization performed in our lab during the last 10 years and 

will highlight our recent findings on pathogen-barrier interactions using a viral (SARS-

CoV-2) challenge. 

 

2. Respiratory 3D models and their applications 
 

Dependent on the experimental approach, the use of various 3D models is more 
valuable – e.g., apical out lung organoids are highly suitable for high content screening 
(HCS) of therapeutic options, air-liquid interphase (ALI) models for e.g., simple 
incorporation of immune cells, evaluation of epithelial integrity, or mucociliary clearance. 

 
2.1. Lung organoids 

 

Organoids are 3D cell aggregates produced in vitro that correspond to differentiated 

tissues or even ´mini-organs´. Organoids originate in tissues that contain stem cells, 

allowing them to self-assemble in vitro. The organoid field owes its progress in particular 

to the development of stem cell technologies over the past two decades. They can be 

generated from adult tissue-specific stem cells or from iPSCs (induced, pluripotent stem 

cells) by adding specific growth factors. The organoids spontaneously organize into 

organ- or tissue-like structures and the cells typical for the tissue/organ are also 

contained in the organoid – thus organoids are heterogeneous in respect to their cell 

composition in contrast to the often homogeneous feeder layer cultures. Thanks to 

technological advances, adult stem cells can now be cultivated over a longer period of 

time, e.g. adult stem cell organoids from lung (Figure 1), small intestine, liver, skin and 

other epithelia. The organoid structure largely depends on the ability of the respective 

cells for self-organization, and the size of organoids is usually very limited due to limited 

diffusion of nutrients and oxygen in living tissue using conventional scaffold-based 

techniques. Under such conditions, cells in the deeper regions of the organoid, die due to 

hypoxia and nutrient deprivation. It is therefore not possible with these technologies to 
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reproduce the anatomy of larger tissues 

or organs, including vascular networks. 

In contrast, novel technologies using a 

vertical, rotating incubator equipped 

with bioreactors allow generation of 

large and living organoids. CelVivo - 

stress free 3D (ClinoStar, Denmark) is a 

specific incubator, in which organoids 

can be cultured without addition of any 

scaffold like Geltrex™, VitroGel™, 

GrowDex™ or similar. The incubator is 

based on bioreactors equipped with 

hydration balls. This area is connected to 

the actual reactor by a membrane, so gas 

exchange takes place at all times. The 

single cells are transferred to the reactor 

in 10 ml medium and placed in the 

incubator. There is space for up to six 

bioreactors in the incubator and each 

reactor can be controlled independently. 

The bioreactors are in constant rotation, 

whereby one can adjust the speed and 

direction individually. Due to the constant movement, the single cells combine to form 

organoids. A camera is installed in the incubator for each position, so that the condition 

of the organoids can be constantly monitored until they are large enough, without having 

to open the incubator (CelVivo; Wrzesinski et al 2021). Not only missing vascularization, 

but the incorporation of immune cells into organoids poses a problem, not solved yet and 

needing intense research. Nevertheless, organoids are in particular useful for high 

content/high throughput testing of potential novel drugs and vaccines within a human 

organ-like structure. Generation of lung organoids and re-polarization into apical-out 

lung organoids used for infection with SARS-CoV-2 variants (wildtype and variants of 

concern (VOCs)) were recently illustrated in more detail in Posch et al (2021a, c).  
 
2.2. Respiratory air-liquid interphase (ALI) cultures 
 

In vitro approaches to recapitulate human respiratory diseases involve the use of 

normal human primary epithelial cells of nasal, bronchial, or tracheal origin, typically 

cultured on biocompatible matrices (cellulose, collagen, alginate, gelatine, elastin, 

Matrigel®) to mimic the in vivo environment. As a further step to improve the 

physiological relevance of these models, these primary cells are cultured under ALI. Under 

these conditions, the cells differentiate into a stratified (pseudostratified) epithelium 

containing basal cells, ciliated cells, and mucus-producing goblet cells. Complex 3D in vitro 

systems, which contain immune cells in addition to the airway epithelia mentioned above, 

and are stimulated with airborne particles, are valuable tools for characterizing host-

pathogen interactions in tissues of the respiratory tract. Various approaches to design 

Figure 1. Lung organoids express ACE2 and 
TMPRSS2. Lung organoids grown in Geltrex™ 
were stained using the SARS-CoV-2 entry 
molecules ACE2 (pink) and TMPRSS2 (green), 
F-actin (phalloidin, orange) and nuclei 
(Höchst, blue). 

https://celvivo.com/wp-content/uploads/2021/04/HI-RES-929528-16-Side-A4-Brochure-CelVivo.pdf
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sophisticated in vitro systems are currently being developed, but often these lack the 

immune component. This can be circumvented by designing epithelial/immune cell co-

cultures, where immune cells are added to differentiated barrier models of the upper and 

lower respiratory tract. Such immune/barrier models are particularly well suited to 

investigate interactions with pathogens or harmful challenges on the respiratory tract, 

such as SARS-CoV-2, which causes COVID-19, or bacteria, fungi and cigarette smoke. Over 

the last decade, a respiratory epithelial/immune model was optimized in our lab in terms 

of applying perfusion or to allow for repeated imaging of the same sample (Zaderer et al 

2019). Perfusion was described in detail in Chandorkar et al (2017), introducing relevant 

immune cells for analysing epithelial/immune interactions with fungi (Chandorkar et al 

2017; Luvanda et al 2021a; Luvanda et al 2021b). The work by Zaderer and al. (2019) is 

described in more detail herein: Live cell imaging is a very important tool to characterize 

cellular processes, such as proliferation and differentiation. In terms of ciliated epithelia, 

live cell analyses are also applied for assessing mucociliary clearance that provides a first 

defence against pathogens attaching to the mucous layer - this mechanism is necessary 

for full function of the lungs (Chateau et al 2018; Gamm et al 2017; Puchelle et al 2006; 

Thompson et al 1995). Various protecting molecules ensure aggregation, trapping, and 

killing of microbes (Whitsett et al 2015). Via one-directional cilia beating, extracellular 

fluid is shifted towards upper parts of the mammalian airway, and the lungs are cleared 

from inhaled pathogens. To allow live cell imaging and monitoring the same Transwell 

over time for examining differentiation of cells as well as mucociliary clearance, we 

switched the ´world´ of the cells and seeded the cells upside-down. This technique allows 

to transfer the Transwell from the original plastic well plate into a liquid drop within a 

glass-bottom plate under sterile conditions. The same Transwell can then be analyzed for 

its differentiation using live cell immunofluorescence and compounds appropriate for the 

live cell detection of e.g., cilia (wheat germ agglutinin), mitochondrial activity 

(MitoTracker, MitoSOX), nuclei (Höchst), cytoskeleton (CellMask, BacMam 2.0) as well as 

its mucociliary clearance capacity using fluorescently labelled beads. By this modified 

protocol, we found that upside-down seeding of cells within a xeno-free, birch-based 

cellulose hydrogel (GrowDex™, UPB Biochemicals) exerted positive effects on 

proliferation and differentiation of primary respiratory epithelial cells. The animal-free 

cellulose hydrogel comprised a significantly faster differentiation of upper and lower 

respiratory epithelial cells even under static conditions and cells were fully differentiated 

after 2 weeks compared to 3 weeks in rat-tail collagen. Moreover, upside-down seeding 

within cellulose enabled using the same Transwell inserts over time. In addition, 

mucociliary clearance can be analyzed in a more realistic setting, using the upside-down 

seeded cells since the cells are not constricted by plastic barriers compared to seeding 

cells the normal way, where cells are restrained with plastics from the Transwell 

chamber. Also in upside-down conditions, easy addition of immune cells is feasible due to 

pipetting immune cells into the upper chamber of the insert, while the air side is in the 

lower chamber. These optimization procedures make the upside-down well a valuable 

tool for repeated exposure experiments, for live cell imaging over a prolonged time as well 

as for monitoring and evaluating mucociliary clearance after infection or treatment with 

e.g., antiviral sprays  (Posch et al 2021b). Thus, the ALI cultures are providing more 

physiologic conditions compared to organoid cultures, but are limited in high content 
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testing. Accordingly, the work flow in our lab is to test many antifungal or antiviral 

compounds in high throughput in apical-out organoids prior to studying the most 

promising ones in immune-competent ALI cultures. These can be equipped with more 

than one immune component by e.g., simultaneous addition of autologous macrophages, 

dendritic cells, NK cells, granulocytes, T and B cells and humoral compounds i.e., 

complement, within one sample, consequently more realistically reflecting the situation 

in the human body. 
 
2.3.  Respiratory 3D models and SARS-CoV-2 
 

Early events, right after transmission of SARS-CoV-2 to respiratory tract tissues, 
determine the course of infection. In some COVID-19 patients an excessive immune 
response is accompanied with a hyperinflammatory milieu resulting in cytokine storm 
and acute respiratory distress syndrome (ARDS). These are associated with increased 
morbidity and mortality, tissue-injuries and multi-organ failure (Chen et al 2020; Huang 
et al 2020; Magro 2020; Tang et al 2020; Wang et al 2020; Zhu et al 2020). To evaluate the 
very first interactions of SARS-CoV-2 patient isolates with human epithelial tissues, 3D 
models of the human respiratory tract as well as lung organoids are highly suitable. 

 

By using our established models, we were able to  
(i) detect that SARS-CoV-2 mediates mucus hypersecretion and mucus plug 

formation in respiratory tissues, which was also illustrated in seriously ill 
COVID-19 patients with airway obstruction and respiratory failure (Khan et 
al 2021; Posch et al 2021c); 

(ii) uncover mechanisms of local complement hyperactivation upon SARS-CoV-
2 infection of apical-out lung organoids as well as pseudostratified human 
airway epithelial cells at an air-liquid interphase. The local complement 
production aggravated coronavirus infection by triggering release of pro-
inflammatory cytokines e.g., IL-1, IL-6, RANTES, MCP-1 from non-immune 
epithelial barriers. By blocking C5aR at the basolateral side of the barrier, all 
these effects were reverted, tissue integrity was remained and virus infection 
significantly decreased (Posch et al 2021a). 

(iii) identify an antiviral spray (ColdZyme™, Enzymatica) that entirely blocked 
binding of SARS-CoV-2 as well as local complement C3 production and 
associated with that, reduced infection and destruction of the tissue model. 
Our in vitro data suggest that ColdZyme mouth spray has an impact on the 
prevention of COVID-19 and that it is important to test the effectiveness of 
already approved antiviral drugs to check their effectiveness against SARS-
CoV-2 (Posch et al 2021b) 
 

These are only some examples, where various 3D tissue model systems provide 
valuable information on infection processes or novel treatment options, which can be 
expanded infinitely. Human 3D cell culture systems are suitable not just for studying first 
host-pathogen interactions and virus dynamics, but also offer added value especially in 
the preclinical phase for testing the effects of new and innovative therapeutic or 
repurposed interventions. 
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