Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Bonsignore 2015 Mech Ageing Dev

From Bioblast
Publications in the MiPMap
Bonsignore LA, Tooley JG, Van Hoose PM, Wang E, Cheng A, Cole MP, Schaner Tooley CE (2015) NRMT1 knockout mice exhibit phenotypes associated with impaired DNA repair and premature aging. Mech Ageing Dev 146-148:42-52.

Β» PMID: 25843235

Bonsignore LA, Tooley JG, Van Hoose PM, Wang E, Cheng A, Cole MP, Schaner Tooley CE (2015) Mech Ageing Dev

Abstract: Though defective genome maintenance and DNA repair have long been known to promote phenotypes of premature aging, the role protein methylation plays in these processes is only now emerging. We have recently identified the first N-terminal methyltransferase, NRMT1, which regulates protein-DNA interactions and is necessary for both accurate mitotic division and nucleotide excision repair. To demonstrate if complete loss of NRMT1 subsequently resulted in developmental or aging phenotypes, we constructed the first NRMT1 knockout (Nrmt1(-/-)) mouse. The majority of these mice die shortly after birth. However, the ones that survive, exhibit decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration; phenotypes characteristic of other mouse models deficient in DNA repair. The livers from Nrmt1(-/-) mice produce less reactive oxygen species (ROS) than wild type controls, and Nrmt1(-/-) mouse embryonic fibroblasts show a decreased capacity for handling oxidative damage. This indicates that decreased mitochondrial function may benefit Nrmt1(-/-) mice and protect them from excess internal ROS and subsequent DNA damage. These studies position the NRMT1 knockout mouse as a useful new system for studying the effects of genomic instability and defective DNA damage repair on organismal and tissue-specific aging. β€’ Keywords: N-terminal methylation, DNA repair, Aging, Mitochondria


Labels: MiParea: Respiration, Genetic knockout;overexpression, Gender 


Organism: Mouse  Tissue;cell: Liver  Preparation: Isolated mitochondria 


Coupling state: LEAK, OXPHOS, ET  Pathway: N, ROX  HRR: Oxygraph-2k