Rasmussen 2003 Eur J Physiol

From Bioblast
Jump to: navigation, search
Publications in the MiPMap
Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003) Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch – Eur J Physiol 446:270-78.

» PMID: 12739165

Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003) Eur J Physiol

Abstract: The mitochondrial theory of ageing was tested. Isolated mitochondria from the quadriceps muscle from normal, healthy, young (age 20+ years, n=12) and elderly (70+ years, n=11) humans were studied in respiratory experiments and the data expressed as activities of the muscle. In each group, the subjects exhibited a variation of physical activity but, on average, the groups were representative for their age with maximum O(2) consumption rate of 50+/-9 and 34+/-13 ml min(-1) kg(-1) (mean+/-SD), respectively. Thirteen different activities were assayed. alpha-Glycerophosphate oxidation was lower in the 70+ group (38%, P~0.001), as was the respiratory capacity for fatty acids (19%, P~0.03). The remaining eleven activities, including those of the central bioenergetic reactions, were not lower in the 70+ group. Pyruvate and alpha-ketoglutarate dehydrogenase activities (i.e. the tricarboxylic acid cycle turnover) and the respiratory chain activity could all account for ~14 mmol O(2) min(-1) kg(-1) muscle (37 degrees C). The capacity for aerobic ATP synthesis was ~35 mmol ATP min(-1) kg(-1). The mitochondrial capacities were far in excess of whole-body performance. They were related to physical activity, but not to age. The mitochondrial theory of ageing, which attributes the age-related decline of muscle performance to decreased mitochondrial function, is incompatible with these results.

Keywords: Age effects, Ageing, Human skeletal muscle, Isolated mitochondria, Oxidative phosphorylation, Oxygen uptake, Quadriceps muscle, Respiration Bioblast editor: Gnaiger E

MitoEAGLE VO2max/BME database

  • Human vastus lateralis
  • 12 males
  • 24 years
  • Range of differenct endurance activities
  • H = 1.79 m
  • M = 75 kg
  • BME = 0.12
  • BMI = 23.4 kg·m-2
  • VO2max/M = 50.0 mL·min-1·kg-1
  • Isolated mitochondria; 25 °C; GSP; conversions: Gnaiger 2009 Int J Biochem Cell Biol
  • JO2,P(NS) = 120.6 µmol·s-1·kg-1 wet muscle mass (37 °C)
  • 10.3 µM mt-protein/mg mw

  • Human vastus lateralis
  • 1 female & 10 males
  • 72 years
  • Range of differenct endurance activities
  • H = 1.75 m
  • M = 80 kg
  • BME = 0.28
  • BMI = 26.1 kg·m-2
  • VO2max/M = 34.0 mL·min-1·kg-1
  • Isolated mitochondria; 25 °C; GSP; conversions: Gnaiger 2009 Int J Biochem Cell Biol
  • JO2,P(NS) = 115.1 µmol·s-1·kg-1 wet muscle mass (37 °C)
  • 10.3 µM mt-protein/mg mw


References

Both muscle strength and peak contraction velocity decline, in some muscles even from the age of 20

[8, 15, 16 17, 22, 23, 26, 27, 28, 29, 30, 32, 36, 37]

The response to training is independent of age

[8, 9, 15, 17, 22, 23, 30, 32, 36, 37].

Loss of type-II fibres is greater than that of type-I

[15, 16, 22, 23, 26, 27, 28, 37].

Cytochrome oxidase deficient fibres appear later in increasing, but very small numbers

[8, 9, 10, 33, 35, 44, 52].

8. Brierley EJ, Johnson MA, James OFW, Turnbull DM (1996) Effects of physical activity and age on mitochondrial function. Q J Med 89: 251–258.

9. Brierley EJ, Johnson MA, Bowman A, Ford GA, Subhan F, Reed JW, James OFW, Turnbull DM (1997) Mitochondrial function in muscle from elderly athletes. Ann Neurol 41: 114–116.

10. Brierley EJ, Johnson MA, Lightowlers RN, James OFW, Turnbull DM (1998) Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Ann Neurol 43: 217–223.

15. Coggan AR, Spina RJ, Rogers MA, King DS, Brown M, Nemeth PM, Holloszy JO (1990) Histochemical and enzymatic characteristics of skeletal muscle in master athletes. J Appl Physiol 68: 1896–1901.

16. Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO (1992) Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol 47: B71–B76.

17. Coggan AR, Abduljalil AM, Swanson SC, Earle MS, Farris JW, Mendenhall LA, Robitaille P-M (1993) Muscle metabolism during exercise in young and older untrained and endurance-trained men. J Appl Physiol 75: 2125–2133.

22. Kent-Braun JA, NG AV (2000) Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89: 1072–1078.

23. Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B (1990) Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140: 41–54.

26. Larsson L, Grimby G, Karlsson J (1979) Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 46: 451–456.

27. Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol 50: A11–A16.

28. Lexell J, Taylor CC, Sjöström M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84: 275–294.

29. McCully KK, Fielding RA, Evans WJ, Leigh JS, Posner JD (1993) Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol 75: 813–819.

30. Meredith CN, Frontera WR, Fisher EC, Hughes VA, Herland JC, Edwards J, Ewans WJ (1989) Peripheral effects of endurance training in young and old subjects. J Appl Physiol 66: 2844–2849.

32. Örlander J, Aniansson A (1980) Effects of physical training on skeletal muscle metabolism and ultrastructure in 70 to 75-year-old men. Acta Physiol Scand 109: 149–154.

33. Ozawa T (1997) Genetic and functional changes in mitochondria associated with aging. Physiol Rev 77: 425–464.

35. Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Lezza AMS, Cantatore P, Gadaleta MN (2001) Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med 30: 1223–1233.

36. Proctor DN, Joyner MJ (1997) Skeletal muscle mass and the reduction of VO2,max in trained older subjects. J Appl Physiol 82: 1411–1415.

37. Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PWR (1995) Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol 78: 2033–2038.

44. Rifai Z, Welle S, Kamp C, Thornton CA (1995) Ragged red fibers in normal aging and inflammatory myopathy. Ann Neurol 37: 24–29.

52. Wilson PD, Franks LM (1975) The effect of age on mitochondrial ultrastructure and enzymes. Adv Exp Med Biol 53: 171–183.

References: BME and VO2max

» VO2max
 Reference
Bakkman 2007 ActaPhysiolBakkman L, Sahlin K, Holmberg HC, Tonkonogi M (2007) Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate. Acta Physiol (Oxford) 190:243–51.
Boushel 2007 DiabetologiaBoushel RC, Gnaiger E, Schjerling P, Skovbro M, Kraunsoee R, Dela F (2007) Patients with Type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790-6.
Chambers 2020 J Appl Physiol (1985)Chambers TL, Burnett TR, Raue U, Lee GA, Finch WH, Graham BM, Trappe TA, Trappe S (2020) Skeletal muscle size, function, and adiposity with lifelong aerobic exercise. J Appl Physiol (1985) 128:368–78.
Daussin 2008 Am J Physiol Regul Integr Comp PhysiolDaussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295:R264-72.
Garnier 2005 FASEB JGarnier A, Fortin D, Zoll J, N'Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43-52.
Gnaiger 2015 Scand J Med Sci SportsGnaiger E, Boushel R, Søndergaard H, Munch-Andersen T, Damsgaard R, Hagen C, Díez-Sánchez C, Ara I, Wright-Paradis C, Schrauwen P, Hesselink M, Calbet JAL, Christiansen M, Helge JW, Saltin B (2015) Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and caucasians in the arctic winter. Scand J Med Sci Sports 25 (Suppl 4):126–34.
Gnaiger 2019 MiP2019
Erich Gnaiger
OXPHOS capacity in human muscle tissue and body mass excess – the MitoEAGLE mission towards an integrative database (Version 6; 2020-01-12).
Loe 2013 PLOS ONELoe H, Rognmo Ø, Saltin B, Wisløff U (2013) Aerobic capacity reference data in 3816 healthy men and women 20-90 years. PLOS ONE 8:e64319.
Mettauer 2001 J Am Coll CardiolMettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38:947-54.
Mogensen 2006 J PhysiolMogensen M, Bagger M, Pedersen PK, Fernström M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol 571:669-81.
N'Guessan 2004 Mol Cell BiochemN'Guessan B, Zoll J, Ribera F, Ponsot E, Lampert E, Ventura-Clapier R, Veksler V, Mettauer B (2004) Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles. Mol Cell Biochem 256-257:267-80.
Pesta 2011 Am J Physiol Regul Integr Comp PhysiolPesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–87.
Ponsot 2006 J Appl Physiol (1985)Ponsot E, Dufour SP, Zoll J, Doutrelau S, N'Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R (2006) Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol (1985) 100:1249-57.
Pribis 2010 NutrientsPribis P, Burtnack CA, McKenzie SO, Thayer J (2010) Trends in body fat, body mass index and physical fitness among male and female college students. Nutrients 2:1075-85.
Raboel 2009 Diabetes Obes MetabRaboel R, Hojberg PM, Almdal T, Boushel RC, Haugaard SB, Madsbad S, Dela F (2009) Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes. Diabetes Obes Metab 11:355-60.
Rasmussen 2001 Am J Physiol Endocrinol MetabRasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J (2001) Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am J Physiol Endocrinol Metab 280:E301-7.
Rasmussen 2003 Eur J PhysiolRasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003) Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch – Eur J Physiol 446:270-78.
Zoll 2002 J PhysiolZoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, Surrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B (2002) Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 543:191-200.

MitoPedia: BME and mitObesity

» Body mass excess and mitObesity | BME and mitObesity news | Summary |

TermAbbreviationDescription
BME cutoff pointsBME cutoffObesity is defined as a disease associated with an excess of body fat with respect to a healthy reference condition. Cutoff points for body mass excess, BME cutoff points, define the critical values for underweight (-0.1 and -0.2), overweight (0.2), and various degrees of obesity (0.4, 0.6, 0.8, and above). BME cutoffs are calibrated by crossover-points of BME with established BMI cutoffs.
Body fat excessBFEIn the healthy reference population (HRP), there is zero body fat excess, BFE, and the fraction of excess body fat in the HRP is expressed - by definition - relative to the reference body mass, M°, at any given height. Importantly, body fat excess, BFE, and body mass excess, BME, are linearly related, which is not the case for the body mass index, BMI.
Body massm [kg]; M [kg·x-1]The body mass, M, is the mass (kilogram [kg]) of an individual (object) [x] and is expressed in units [kg/x]. Whereas the body weight changes as a function of gravitational force (you are weightless at zero gravity; your floating weight in water is different from your weight in air), your mass is independent of gravitational force, and it is the same in air and water.
Body mass excessBMEThe body mass excess, BME, is an index of obesity and as such BME is a lifestyle metric. The BME is a measure of the extent to which your actual body mass, M [kg/x], deviates from M° [kg/x], which is the reference body mass [kg] per individual [x] without excess body fat in the healthy reference population, HRP. A balanced BME is BME° = 0.0 with a band width of -0.1 towards underweight and +0.2 towards overweight. The BME is linearly related to the body fat excess.
Body mass indexBMIThe body mass index, BMI, is the ratio of body mass to height squared (BMI=M·H-2), recommended by the WHO as a general indicator of underweight (BMI<18.5 kg·m-2), overweight (BMI>25 kg·m-2) and obesity (BMI>30 kg·m-2). Keys et al (1972; see 2014) emphasized that 'the prime criterion must be the relative independence of the index from height'. It is exactly the dependence of the BMI on height - from children to adults, women to men, Caucasians to Asians -, which requires adjustments of BMI-cutoff points. This deficiency is resolved by the body mass excess relative to the healthy reference population.
ComorbidityComorbidities are common in obesogenic lifestyle-induced early aging. These are preventable, non-communicable diseases with strong associations to obesity. In many studies, cause and effect in the sequence of onset of comorbidities remain elusive. Chronic degenerative diseases are commonly obesity-induced. The search for the link between obesity and the etiology of diverse preventable diseases lead to the hypothesis, that mitochondrial dysfunction is the common mechanism, summarized in the term 'mitObesity'.
Healthy reference populationHRPA healthy reference population, HRP, establishes the baseline for the relation between body mass and height in healthy people of zero underweight or overweight, providing a reference for evaluation of deviations towards underweight or overweight and obesity. The WHO Child Growth Standards (WHO-CGS) on height and body mass refer to healthy girls and boys from Brazil, Ghana, India, Norway, Oman and the USA. The Committee on Biological Handbooks compiled data on height and body mass of healthy males from infancy to old age (USA), published before emergence of the fast-food and soft-drink epidemic. Four allometric phases are distinguished with distinct allometric exponents. At heights above 1.26 m/x the allometric exponent is 2.9, equal in women and men, and significantly different from the exponent of 2.0 implicated in the body mass index, BMI [kg/m2].
Height of humansh [m]; H [m·x-1]The height of humans, h, is given in SI units in meters [m]. Humans are countable objects, and the symbol and unit of the number of objects is N [x]. The average height of N objects is, H = h/N [m/x], where h is the heights of all N objects measured on top of each other. Therefore, the height per human has the unit [m·x-1] (compare body mass [kg·x-1]). Without further identifyer, H is considered as the standing height of a human, measured without shoes, hair ornaments and heavy outer garments.
Lengthl [m]Length l is an SI base quantity with SI base unit meter m. Quantities derived from length are area A [m2] and volume V [m3]. Length is an extensive quantity, increasing additively with the number of objects. The term 'height' h is used for length in cases of vertical position (see height of humans). Length of height per object, LUX [m·x-1] is length per unit-entity UX, in contrast to lentgth of a system, which may contain one or many entities, such as the length of a pipeline assembled from a number NX of individual pipes. Length is a quantity linked to direct sensory, practical experience, as reflected in terms related to length: long/short (height: tall/small). Terms such as 'long/short distance' are then used by analogy in the context of the more abstract quantity time (long/short duration).
MitObesity drugsBioactive mitObesity compounds are drugs and nutraceuticals with more or less reproducible beneficial effects in the treatment of diverse preventable degenerative diseases implicated in comorbidities linked to obesity, characterized by common mechanisms of action targeting mitochondria.
ObesityObesity is a disease resulting from excessive accumulation of body fat. In common obesity (non-syndromic obesity) excessive body fat is due to an obesogenic lifestyle with lack of physical exercise ('couch') and caloric surplus of food consumption ('potato'), causing several comorbidities which are characterized as preventable non-communicable diseases. Persistent body fat excess associated with deficits of physical activity induces a weight-lifting effect on increasing muscle mass with decreasing mitochondrial capacity. Body fat excess, therefore, correlates with body mass excess up to a critical stage of obesogenic lifestyle-induced sarcopenia, when loss of muscle mass results in further deterioration of physical performance particularly at older age.
VO2maxVO2max; VO2max/MMaximum oxygen consumption, VO2max, is and index of cardiorespiratory fitness, measured by spiroergometry on human and animal organisms capable of controlled physical exercise performance on a treadmill or cycle ergometer. VO2max is the maximum respiration of an organism, expressed as the volume of O2 at STPD consumed per unit of time per individual object [mL.min-1.x-1]. If normalized per body mass of the individual object, M [kg.x-1], mass specific maximum oxygen consumption, VO2max/M, is expressed in units [mL.min-1.kg-1].


Labels: MiParea: Exercise physiology;nutrition;life style  Pathology: Aging;senescence 

Organism: Human  Tissue;cell: Skeletal muscle  Preparation: Isolated mitochondria  Enzyme: Complex I, Complex II;succinate dehydrogenase, Complex V;ATP synthase  Regulation: Substrate 

Pathway: N, NS 


MitoEAGLE BME, BMI, VO2max, BME