Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Song 2020 Life Sci

From Bioblast
Publications in the MiPMap
Song K, Zhang Y, Ga Q, Bai Z, Ge RL (2020) High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver disease in mice by regulating mitochondrial and AMPK signaling. Life Sci 252:117633.

» PMID: 32289432

Song Kang, Zhang Yifan, Ga Qin, Bai Zhenzhong, Ge Ri-Li (2020) Life Sci

Abstract: High-fat intake induces obesity and non-alcoholic fatty liver disease (NAFLD). However, high-altitude chronic hypoxia might alleviate NAFLD progression through improved mitochondrial function and AMP-activated protein kinase (AMPK) signaling. We hypothesized that high-altitude chronic hypoxia would have protective effects against NAFLD development.

C57BL/6J mice were randomly divided into control (normal diet and altitude 50 m), CHH (normal diet and altitude 4300 m), HFD (high-fat diet and altitude 50 m), and HFD-CHH (high-fat diet and altitude 4300 m) groups. After being maintained for 8 weeks under the appropriate conditions, mice were evaluated.

The degree of liver lipid accumulation and expression of the lipid synthesis-related genes acetyl-CoA carboxylase1 (ACC1), fatty acid synthesis (FAS), and sterol regulatory element binding protein-1c (SREBP-1c) were reduced in the HFD-CHH group; however, expression of the lipolysis-related gene carnitine palmitoyl transferase 1 (CPT1) was increased. Furthermore, in addition to increased expression of mitochondrial biogenesis-related genes, mitochondrial respiratory function and mitochondrial DNA content were elevated in the HFD-CHH group compared to those in the HFD group. The HFD-CHH group also exhibited significantly increased antioxidation activity and decreased reactive oxygen species production (P < 0.05). Finally, AMPK signaling in the liver was activated and the expression of phosphorylated-AMPK (P-AMPK) was significantly increased in the HFD-CHH group.

Collectively, our findings suggest that high altitude-induced hypoxia might improve impaired mitochondrial function and activate AMPK signaling in obesity-induced NAFLD. High-altitude chronic hypoxia could be a new treatment strategy for obesity-induced NAFLD.

Copyright © 2018. Published by Elsevier Inc. Keywords: AMPK, Chronic hypoxia, High altitude, Mitochondria, NAFLD, Obesity Bioblast editor: Plangger M


Labels: MiParea: Respiration  Pathology: Obesity  Stress:Hypoxia  Organism: Mouse  Tissue;cell: Liver  Preparation: Homogenate 


Coupling state: LEAK, OXPHOS, ET  Pathway: F, N, NS  HRR: Oxygraph-2k 

2020-04