Zucker 1962 Committee on Biological Handbooks, Fed Amer Soc Exp Biol

From Bioblast
Jump to: navigation, search
Publications in the MiPMap
Zucker TF (1962) Regression of standing and sitting weights on body weight: man. In: Growth including reproduction and morphological development. Altman PL, Dittmer DS, eds: Committee on Biological Handbooks, Fed Amer Soc Exp Biol:336-7.

»

Zucker TF (1962) Committee on Biological Handbooks, Fed Amer Soc Exp Biol

Abstract: CBH1962 Growth-cover.png


Bioblast editor: Gnaiger E


MitoFit-to-aging.jpg
Healthy reference population     Body mass excess         BFE         BME cutoffs         BMI         H         M         VO2max         mitObesity drugs



CBH1962 H-BM.png

The healthy reference population

Quotation from the contributor Theodore F Zucker: "Curves were plotted from five large groups of measurements made on males from infancy to old age. The curve for standing height was based on a total of 17,523 values .. In each of the five groups, care was taken to exclude persons not in good health. .. Evidence indicates that curves for females (not represented) are identical in slope and position with those of males, but the means for females of the same age simply do not extend as far to the right along the curve. The line slopes for the standing height curve are 34, 63, and 35 %, with the breaks at 10 and 22 kg. .. The relationships between standing height and weight for the three weight ranges are expressed by the formulas H/W0.34, H/W0.63, and H/W0.35."
Note: The term 'weight' should be replaced by body mass.
» Healthy reference population
References in Zucker (1962)
  1. Simmons KW (1944) Monographs Soc Research in Child Develop 9(1).
  2. Meredith HV (1935) Univ Iowa studies in child welfare 11(3).
  3. Bayley N, Davis FC (1935) Growth changes in bodily size and proportions during the first three years. Biometrika 27:26-87.
  4. Gray H, Ayres JG (1931) Growth in private school children. Behavior Res Fund Monog, Univ Chicago Press, Chicago:282 pp. – With averages and variabilities based on 3110 measurings on boys and 1473 on girls from the ages of one to nineteen years.
  5. Peatman JG, Higgons RA (1938) Growth norms from birth to the age of five years: a study of children reared with optimal pediatric and home care. Am J Diseases Children 55:1233-1247.


Publications: BME and height

» Height of humans
 Reference
Bosy-Westphal 2009 Br J NutrBosy-Westphal A, Plachta-Danielzik S, Dörhöfer RP, Müller MJ (2009) Short stature and obesity: positive association in adults but inverse association in children and adolescents. Br J Nutr 102:453-61.
De Onis 2007 Bull World Health Organizationde Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organization 85:660-7.
Gnaiger 2019 MiP2019
Erich Gnaiger
OXPHOS capacity in human muscle tissue and body mass excess – the MitoEAGLE mission towards an integrative database (Version 6; 2020-01-12).
Hood 2019 Nutr DiabetesHood K, Ashcraft J, Watts K, Hong S, Choi W, Heymsfield SB, Gautam RK, Thomas D (2019) Allometric scaling of weight to height and resulting body mass index thresholds in two Asian populations. Nutr Diabetes 9:2. doi: 10.1038/s41387-018-0068-3.
Indian Academy of Pediatrics Growth Charts Committee 2015 Indian PediatrIndian Academy of Pediatrics Growth Charts Committee, Khadilkar V, Yadav S, Agrawal KK, Tamboli S, Banerjee M, Cherian A, Goyal JP, Khadilkar A, Kumaravel V, Mohan V, Narayanappa D, Ray I, Yewale V (2015) Revised IAP growth charts for height, weight and body mass index for 5- to 18-year-old Indian children. Indian Pediatr 52:47-55.
Zucker 1962 Committee on Biological Handbooks, Fed Amer Soc Exp BiolZucker TF (1962) Regression of standing and sitting weights on body weight: man. In: Growth including reproduction and morphological development. Altman PL, Dittmer DS, eds: Committee on Biological Handbooks, Fed Amer Soc Exp Biol:336-7.

MitoPedia: BME and mitObesity

» Body mass excess and mitObesity | BME and mitObesity news | Summary |

TermAbbreviationDescription
BME cutoff pointsBME cutoffObesity is defined as a disease associated with an excess of body fat with respect to a healthy reference condition. Cutoff points for body mass excess, BME cutoff points, define the critical values for underweight (-0.1 and -0.2), overweight (0.2), and various degrees of obesity (0.4, 0.6, 0.8, and above). BME cutoffs are calibrated by crossover-points of BME with established BMI cutoffs.
Body fat excessBFEIn the healthy reference population (HRP), there is zero body fat excess, BFE, and the fraction of excess body fat in the HRP is expressed - by definition - relative to the reference body mass, M°, at any given height. Importantly, body fat excess, BFE, and body mass excess, BME, are linearly related, which is not the case for the body mass index, BMI.
Body massm [kg]; M [kg·x-1]The body mass, M, is the mass (kilogram [kg]) of an individual (object) [x] and is expressed in units [kg/x]. Whereas the body weight changes as a function of gravitational force (you are weightless at zero gravity; your floating weight in water is different from your weight in air), your mass is independent of gravitational force, and it is the same in air and water.
Body mass excessBMEThe body mass excess, BME, is an index of obesity and as such BME is a lifestyle metric. The BME is a measure of the extent to which your actual body mass, M [kg/x], deviates from M° [kg/x], which is the reference body mass [kg] per individual [x] without excess body fat in the healthy reference population, HRP. A balanced BME is BME° = 0.0 with a band width of -0.1 towards underweight and +0.2 towards overweight. The BME is linearly related to the body fat excess.
Body mass indexBMIThe body mass index, BMI, is the ratio of body mass to height squared (BMI=M·H-2), recommended by the WHO as a general indicator of underweight (BMI<18.5 kg·m-2), overweight (BMI>25 kg·m-2) and obesity (BMI>30 kg·m-2). Keys et al (1972; see 2014) emphasized that 'the prime criterion must be the relative independence of the index from height'. It is exactly the dependence of the BMI on height - from children to adults, women to men, Caucasians to Asians -, which requires adjustments of BMI-cutoff points. This deficiency is resolved by the body mass excess relative to the healthy reference population.
ComorbidityComorbidities are common in obesogenic lifestyle-induced early aging. These are preventable, non-communicable diseases with strong associations to obesity. In many studies, cause and effect in the sequence of onset of comorbidities remain elusive. Chronic degenerative diseases are commonly obesity-induced. The search for the link between obesity and the etiology of diverse preventable diseases lead to the hypothesis, that mitochondrial dysfunction is the common mechanism, summarized in the term 'mitObesity'.
Healthy reference populationHRPA healthy reference population, HRP, establishes the baseline for the relation between body mass and height in healthy people of zero underweight or overweight, providing a reference for evaluation of deviations towards underweight or overweight and obesity. The WHO Child Growth Standards (WHO-CGS) on height and body mass refer to healthy girls and boys from Brazil, Ghana, India, Norway, Oman and the USA. The Committee on Biological Handbooks compiled data on height and body mass of healthy males from infancy to old age (USA), published before emergence of the fast-food and soft-drink epidemic. Four allometric phases are distinguished with distinct allometric exponents. At heights above 1.26 m/x the allometric exponent is 2.9, equal in women and men, and significantly different from the exponent of 2.0 implicated in the body mass index, BMI [kg/m2].
Height of humansh [m]; H [m·x-1]The height of humans, h, is given in SI units in meters [m]. Humans are countable objects, and the symbol and unit of the number of objects is N [x]. The average height of N objects is, H = h/N [m/x], where h is the heights of all N objects measured on top of each other. Therefore, the height per human has the unit [m·x-1] (compare body mass [kg·x-1]). Without further identifyer, H is considered as the standing height of a human, measured without shoes, hair ornaments and heavy outer garments.
MitObesity drugsBioactive mitObesity compounds are drugs and nutraceuticals with more or less reproducible beneficial effects in the treatment of diverse preventable degenerative diseases implicated in comorbidities linked to obesity, characterized by common mechanisms of action targeting mitochondria.
ObesityObesity is a disease resulting from excessive accumulation of body fat. In common obesity (non-syndromic obesity) excessive body fat is due to an obesogenic lifestyle with lack of physical exercise ('couch') and caloric surplus of food consumption ('potato'), causing several comorbidities which are characterized as preventable non-communicable diseases. Persistent body fat excess associated with deficits of physical activity induces a weight-lifting effect on increasing muscle mass with decreasing mitochondrial capacity. Body fat excess, therefore, correlates with body mass excess up to a critical stage of obesogenic lifestyle-induced sarcopenia, when loss of muscle mass results in further deterioration of physical performance particularly at older age.
VO2maxVO2max; VO2max/MMaximum oxygen consumption, VO2max, is and index of cardiorespiratory fitness, measured by spiroergometry on human and animal organisms capable of controlled physical exercise performance on a treadmill or cycle ergometer. VO2max is the maximum respiration of an organism, expressed as the volume of O2 at STPD consumed per unit of time per individual object [mL.min-1.x-1]. If normalized per body mass of the individual object, M [kg.x-1], mass specific maximum oxygen consumption, VO2max/M, is expressed in units [mL.min-1.kg-1].


Labels: MiParea: Gender, Developmental biology 


Organism: Human 

Preparation: Intact organism 




BMI, BME, HRP, Height