Miotto 2016 Biochem J: Difference between revisions

From Bioblast
(Created page with "{{Publication |title=Miotto PM, Holloway GP (2016) In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transp...")
ย 
No edit summary
Line 1: Line 1:
{{Publication
{{Publication
|title=Miotto PM, Holloway GP (2016) In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport. Biochem J 473:2831-43. ย 
|title=Miotto PM, Holloway GP (2016) In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport. Biochem J 473:2831-43.
|info=[http://www.ncbi.nlm.nih.gov/pubmed/27402793 PMID: 27402793]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/27402793 PMID: 27402793]
|authors=Miotto PM, Holloway GP
|authors=Miotto PM, Holloway GP
Line 8: Line 8:


ยฉ 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
ยฉ 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
|keywords=ADP sensitivity, Adenine nucleotide translocase, Exercise metabolism, Mitochondrial bioenergetics, Mitochondrial respiration, Skeletal muscle
|keywords=ADP sensitivity, Adenine nucleotide translocase, Exercise metabolism, Mitochondrial bioenergetics, Mitochondrial respiration, Skeletal muscle, Blebbistatin
|mipnetlab=CA Guelph Holloway GP
|mipnetlab=CA Guelph Holloway GP
}}
}}
Line 21: Line 21:
|substratestates=CI, CI&II
|substratestates=CI, CI&II
|instruments=Oxygraph-2k
|instruments=Oxygraph-2k
|additional=Labels, 2016-09
|additional=2016-09
}}
}}

Revision as of 14:42, 20 September 2016

Publications in the MiPMap
Miotto PM, Holloway GP (2016) In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport. Biochem J 473:2831-43.

ยป PMID: 27402793

Miotto PM, Holloway GP (2016) Biochem J

Abstract: The transport of cytosolic adenosine diphosphate (ADP) into the mitochondria is a major control point in metabolic homeostasis, as ADP concentrations directly affect glycolytic flux and oxidative phosphorylation rates within mitochondria. A large contributor to the efficiency of this process is thought to involve phosphocreatine (PCr)/Creatine (Cr) shuttling through mitochondrial creatine kinase (Mi-CK), whereas the biological importance of alterations in Cr-independent ADP transport during exercise remains unknown. Therefore, we utilized an Mi-CK knockout (KO) model to determine whether in vivo Cr-independent mechanisms are biologically important for sustaining energy homeostasis during exercise. Ablating Mi-CK did not alter exercise tolerance, as the time to volitional fatigue was similar between wild-type (WT) and KO mice at various exercise intensities. In addition, skeletal muscle metabolic profiles after exercise, including glycogen, PCr/Cr ratios, free ADP/adenosine monophosphate (AMP), and lactate, were similar between genotypes. While these data suggest that the absence of PCr/Cr shuttling is not detrimental to maintaining energy homeostasis during exercise, KO mice displayed a dramatic increase in Cr-independent mitochondrial ADP sensitivity after exercise. Specifically, whereas mitochondrial ADP sensitivity decreased with exercise in WT mice, in stark contrast, exercise increased mitochondrial Cr-independent ADP sensitivity in KO mice. As a result, the apparent ADP Km was 50% lower in KO mice after exercise, suggesting that in vivo activation of voltage-dependent anion channel (VDAC)/adenine nucleotide translocase (ANT) can support mitochondrial ADP transport. Altogether, we provide insight that Cr-independent ADP transport mechanisms are biologically important for regulating ADP sensitivity during exercise, while highlighting complex regulation and the plasticity of the VDAC/ANT axis to support adenosine triphosphate demand.

ยฉ 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society. โ€ข Keywords: ADP sensitivity, Adenine nucleotide translocase, Exercise metabolism, Mitochondrial bioenergetics, Mitochondrial respiration, Skeletal muscle, Blebbistatin

โ€ข O2k-Network Lab: CA Guelph Holloway GP


Labels: MiParea: Respiration, Genetic knockout;overexpression, Exercise physiology;nutrition;life style 


Organism: Mouse  Tissue;cell: Skeletal muscle  Preparation: Permeabilized tissue  Enzyme: Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase  Regulation: ADP, AMP, Inhibitor, PCr;Cr  Coupling state: LEAK, OXPHOS 

HRR: Oxygraph-2k 

2016-09 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.