Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Ornelas 2017 Cancer Metastasis Rev

From Bioblast
Revision as of 11:09, 24 September 2023 by Gnaiger Erich (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Publications in the MiPMap
Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, Hawk E, Vilar E, Bhattacharya P, Millward S (2017) Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev 36:289-303. https://doi.org/10.1007/s10555-017-9675-z

Β» PMID: 28762014 Open Access

Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, Hawk E, Vilar E, Bhattacharya P, Millward S (2017) Cancer Metastasis Rev

Abstract: After more than a century, aspirin remains one of the most commonly used drugs in western medicine. Although mainly used for its anti-thrombotic, anti-pyretic, and analgesic properties, a multitude of clinical studies have provided convincing evidence that regular, low-dose aspirin use dramatically lowers the risk of cancer. These observations coincide with recent studies showing a functional relationship between platelets and tumors, suggesting that aspirin's chemopreventive properties may result, in part, from direct modulation of platelet biology and biochemistry. Here, we present a review of the biochemistry and pharmacology of aspirin with particular emphasis on its cyclooxygenase-dependent and cyclooxygenase-independent effects in platelets. We also correlate the results of proteomic-based studies of aspirin acetylation in eukaryotic cells with recent developments in platelet proteomics to identify non-cyclooxygenase targets of aspirin-mediated acetylation in platelets that may play a role in its chemopreventive mechanism.

β€’ Bioblast editor: Gnaiger E

Selected quote

  • While at the preparation and printing of this review, we are not aware of any studies that directly address the extent of aspirin-mediated acetylation of metabolic enzymes or the effect of aspirin on metabolic flux, the proteomic evidence suggests that this may be an important non-canonical effect of aspirin on platelet biochemistry.


Labels: MiParea: Pharmacology;toxicology  Pathology: Cancer 

Organism: Human  Tissue;cell: Blood cells, Platelet  Preparation: Intact cells 




Aspirin