Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Roy 2013 PLoS One"

From Bioblast
(Created page with "{{Publication |title=Roy C, Paglialunga S, Schaart G, Moonen-Kornips E, Meex RC, Phielix E, Hoeks J, Hesselink MK, Cianflone K, Schrauwen P (2013) Relationship of C5L2 receptor t...")
Β 
Line 1: Line 1:
{{Publication
{{Publication
|title=Roy C, Paglialunga S, Schaart G, Moonen-Kornips E, Meex RC, Phielix E, Hoeks J, Hesselink MK, Cianflone K, Schrauwen P (2013) Relationship of C5L2 receptor to skeletal muscle substrate utilization. PLoS One 8: e57494. Β 
|title=Roy C, Paglialunga S, Schaart G, Moonen-Kornips E, Meex RC, Phielix E, Hoeks J, Hesselink MK, Cianflone K, Schrauwen P (2013) Relationship of C5L2 receptor to skeletal muscle substrate utilization. PLoS One 8: e57494.
|info=[http://www.ncbi.nlm.nih.gov/pubmed/23460866 PMID: 23460866 Open Access]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/23460866 PMID: 23460866 Open Access]
|authors=Roy C, Paglialunga S, Schaart G, Moonen-Kornips E, Meex RC, Phielix E, Hoeks J, Hesselink MK, Cianflone K, Schrauwen P
|authors=Roy C, Paglialunga S, Schaart G, Moonen-Kornips E, Meex RC, Phielix E, Hoeks J, Hesselink MK, Cianflone K, Schrauwen P
Line 6: Line 6:
|journal=PLoS One
|journal=PLoS One
|abstract=OBJECTIVE: To investigate the role of Acylation Stimulating Protein (ASP) receptor C5L2 in skeletal muscle fatty acid accumulation and metabolism as well as insulin sensitivity in both mice and human models of diet-induced insulin resistance.
|abstract=OBJECTIVE: To investigate the role of Acylation Stimulating Protein (ASP) receptor C5L2 in skeletal muscle fatty acid accumulation and metabolism as well as insulin sensitivity in both mice and human models of diet-induced insulin resistance.
DESIGN AND METHODS: Male wildtype (WT) and C5L2 knockout (KO) mice were fed a low (LFD) or a high (HFD) fat diet for 10 weeks. Intramyocellular lipid (IMCL) accumulation (by oil red O staining) and beta-oxidation HADH enzyme activity were determined in skeletal muscle. Mitochondria were isolated from hindleg muscles for high-resolution respirometry. Muscle C5L2 protein content was also determined in obese type 2 diabetics and age- and BMI matched men.
DESIGN AND METHODS: Male wildtype (WT) and C5L2 knockout (KO) mice were fed a low (LFD) or a high (HFD) fat diet for 10 weeks. Intramyocellular lipid (IMCL) accumulation (by oil red O staining) and beta-oxidation HADH enzyme activity were determined in skeletal muscle. Mitochondria were isolated from hindleg muscles for high-resolution respirometry. Muscle C5L2 protein content was also determined in obese type 2 diabetics and age- and BMI matched men.
RESULTS: IMCL levels were increased by six-fold in C5L2KO-HFD compared to WT-HFD mice (p<0.05) and plasma insulin levels were markedly increased in C5L2KO-HFD mice (twofold, p<0.05). Muscle HADH activity was elevated in C5L2KO-LFD mice (+75%, p<0.001 vs. WT-LFD) and C5L2KO-HFD displayed increased mitochondrial fatty acid oxidative capacity compared to WT-HFD mice (+23%, p<0.05). In human subjects, C5L2 protein content was reduced (-48%, p<0.01) in type 2 diabetic patients when compared to obese controls. Further, exercise training increased C5L2 (+45%, pβ€Š=β€Š0.0019) and ASP (+80%, p<0.001) in obese insulin-resistant men.
RESULTS: IMCL levels were increased by six-fold in C5L2KO-HFD compared to WT-HFD mice (p<0.05) and plasma insulin levels were markedly increased in C5L2KO-HFD mice (twofold, p<0.05). Muscle HADH activity was elevated in C5L2KO-LFD mice (+75%, p<0.001 vs. WT-LFD) and C5L2KO-HFD displayed increased mitochondrial fatty acid oxidative capacity compared to WT-HFD mice (+23%, p<0.05). In human subjects, C5L2 protein content was reduced (-48%, p<0.01) in type 2 diabetic patients when compared to obese controls. Further, exercise training increased C5L2 (+45%, pβ€Š=β€Š0.0019) and ASP (+80%, p<0.001) in obese insulin-resistant men.
CONCLUSION: The results suggest that insulin sensitivity may be permissive for coupling of C5L2 levels to lipid storage and utilization.
CONCLUSION: The results suggest that insulin sensitivity may be permissive for coupling of C5L2 levels to lipid storage and utilization.
|keywords=Diet-induced insulin resistance, Β 
|keywords=Diet-induced insulin resistance,
}}
}}
{{Labeling
{{Labeling

Revision as of 12:51, 2 August 2013

Publications in the MiPMap
Roy C, Paglialunga S, Schaart G, Moonen-Kornips E, Meex RC, Phielix E, Hoeks J, Hesselink MK, Cianflone K, Schrauwen P (2013) Relationship of C5L2 receptor to skeletal muscle substrate utilization. PLoS One 8: e57494.

Β» PMID: 23460866 Open Access

Roy C, Paglialunga S, Schaart G, Moonen-Kornips E, Meex RC, Phielix E, Hoeks J, Hesselink MK, Cianflone K, Schrauwen P (2013) PLoS One

Abstract: OBJECTIVE: To investigate the role of Acylation Stimulating Protein (ASP) receptor C5L2 in skeletal muscle fatty acid accumulation and metabolism as well as insulin sensitivity in both mice and human models of diet-induced insulin resistance.

DESIGN AND METHODS: Male wildtype (WT) and C5L2 knockout (KO) mice were fed a low (LFD) or a high (HFD) fat diet for 10 weeks. Intramyocellular lipid (IMCL) accumulation (by oil red O staining) and beta-oxidation HADH enzyme activity were determined in skeletal muscle. Mitochondria were isolated from hindleg muscles for high-resolution respirometry. Muscle C5L2 protein content was also determined in obese type 2 diabetics and age- and BMI matched men. RESULTS: IMCL levels were increased by six-fold in C5L2KO-HFD compared to WT-HFD mice (p<0.05) and plasma insulin levels were markedly increased in C5L2KO-HFD mice (twofold, p<0.05). Muscle HADH activity was elevated in C5L2KO-LFD mice (+75%, p<0.001 vs. WT-LFD) and C5L2KO-HFD displayed increased mitochondrial fatty acid oxidative capacity compared to WT-HFD mice (+23%, p<0.05). In human subjects, C5L2 protein content was reduced (-48%, p<0.01) in type 2 diabetic patients when compared to obese controls. Further, exercise training increased C5L2 (+45%, p = 0.0019) and ASP (+80%, p<0.001) in obese insulin-resistant men.

CONCLUSION: The results suggest that insulin sensitivity may be permissive for coupling of C5L2 levels to lipid storage and utilization. β€’ Keywords: Diet-induced insulin resistance


Labels:

Stress:RONS; Oxidative Stress"RONS; Oxidative Stress" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property., Mitochondrial Disease; Degenerative Disease and Defect"Mitochondrial Disease; Degenerative Disease and Defect" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Human, Mouse  Tissue;cell: Skeletal muscle  Preparation: Isolated Mitochondria"Isolated Mitochondria" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Complex I, Complex II; Succinate Dehydrogenase"Complex II; Succinate Dehydrogenase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property. 


HRR: Oxygraph-2k