Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has abstract" with value "Brain inflammation may contribute to neuronal loss in infectious, ischemic, traumatic and neurodegenerative brain pathologies. We and others have shown that: a) brain inflammation induces the expression in microglia and astrocytes of inducible nitric oxide synthase (iNOS), which produces high levels of NO, b) NO derivatives peroxynitrite and S-nitrosothiols inactivate mitochondrial Complex I, resulting in a stimulation of oxidant production by mitochondria, c) oxidant production by microglia contributes to their inflammatory activation, and d) activated microglia can cause neuronal loss by eating them alive [1-4]. Thus, we were interested in whether activated microglia may inhibit their mitochondrial Complex I, resulting in sustained activation and phagocytosis of live neurons. There is evidence that in Parkinson’s disease and general brain aging mitochondrial Complex I is inhibited in affected parts of the brain. Rotenone is an environmental toxin and Complex I inhibitor that can cause activation of microglia and a Parkinson’s like pathology in rodents. We, therefore, tested whether it could cause microglia to phagocytose live neurons. We found that low nanomolar levels of rotenone could indeed activate microglial phagocytosis and cause neurons to phagocytose co-cultured neurons [5]. Removal of microglia or inhibition of phagocytic signalling prevented rotenone-induced neuronal loss, leaving viable neurons [5]. Low levels of brain inflammation during ageing may cause partial inhibition of Complex I, resulting in oxidant production which sustains inflammation, and induces microglia to phagocytose synapses and cell bodies of live neurons. This process may be exacerbated in Parkinson’s disease and prevented by blocking inflammation or phagocytic signalling.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Brown G 2014 Abstract MiP2014  + (Brain inflammation may contribute to neuroBrain inflammation may contribute to neuronal loss in infectious, ischemic, traumatic and neurodegenerative brain pathologies. We and others have shown that: a) brain inflammation induces the expression in microglia and astrocytes of inducible nitric oxide synthase (iNOS), which produces high levels of NO, b) NO derivatives peroxynitrite and S-nitrosothiols inactivate mitochondrial Complex I, resulting in a stimulation of oxidant production by mitochondria, c) oxidant production by microglia contributes to their inflammatory activation, and d) activated microglia can cause neuronal loss by eating them alive [1-4]. Thus, we were interested in whether activated microglia may inhibit their mitochondrial Complex I, resulting in sustained activation and phagocytosis of live neurons.</br></br>There is evidence that in Parkinson’s disease and general brain aging mitochondrial Complex I is inhibited in affected parts of the brain. Rotenone is an environmental toxin and Complex I inhibitor that can cause activation of microglia and a Parkinson’s like pathology in rodents. We, therefore, tested whether it could cause microglia to phagocytose live neurons.</br></br>We found that low nanomolar levels of rotenone could indeed activate microglial phagocytosis and cause neurons to phagocytose co-cultured neurons [5]. Removal of microglia or inhibition of phagocytic signalling prevented rotenone-induced neuronal loss, leaving viable neurons [5].</br></br>Low levels of brain inflammation during ageing may cause partial inhibition of Complex I, resulting in oxidant production which sustains inflammation, and induces microglia to phagocytose synapses and cell bodies of live neurons. This process may be exacerbated in Parkinson’s disease and prevented by blocking inflammation or phagocytic signalling.ing inflammation or phagocytic signalling.)
    Cookies help us deliver our services. By using our services, you agree to our use of cookies.