Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Volume"

From Bioblast
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
|abbr=''V'' [m<sup>3</sup>]; 1 m<sup>3</sup> = 1000 L
|abbr=''V'' [m<sup>3</sup>]; 1 m<sup>3</sup> = 1000 L
|description='''Volume''' ''V'' is a derived quantity based on the SI base quantity [[length]] [m] and is expressed in terms of [[SI base units]] in the derived unit cubic meter [m<sup>3</sup>]. The liter [L = dm<sup>3</sup>] is a conventional unit of volume for concentration and is used for most solution chemical kinetics. The volume ''V'' contained in a system (experimental chamber) is separated from the environment by the system boundaries; this is called the volume of the system, and described in practical language as big/small (derived from [[length]], [[height]]) or voluminous. Systems are defined at constant volume or constant [[pressure]]. For a pure sample S, the volume ''V''<sub>S</sub> of the pure sample equals the volume ''V'' of the system, ''V''<sub>S</sub> = ''V''. For [[sample]] s in a mixture, the ratio ''V''<sub>s</sub>·''V''<sup>-1</sup> is the nondimensional [[volume fraction]] ''Φ''<sub>s</sub> of sample s. Quantities divided by volume are [[concentration]]s of sample s in a mixture, such as [[count]] concentration ''C<sub>X</sub>'' = ''N<sub>X</sub>''·''V''<sup>-1</sup> [x·L<sup>-1</sup>], and amount of substance concentration ''C''<sub>B</sub> = ''n''<sub>B</sub>·''V''<sup>-1</sup> [mol·L<sup>-1</sup>]. Mass concentration is [[density]] ''ρ''<sub>s</sub> = ''m''<sub>s</sub>·''V''<sup>-1</sup> [kg·L<sup>-1</sup>]. In closed compressible systems (with a gas phase), the concentration of the gas increases, when pressure-volume [[work]] is performed on the system.
|description='''Volume''' ''V'' is a derived quantity based on the SI base quantity [[length]] [m] and is expressed in terms of [[SI base units]] in the derived unit cubic meter [m<sup>3</sup>]. The liter [L = dm<sup>3</sup>] is a conventional unit of volume for concentration and is used for most solution chemical kinetics. The volume ''V'' contained in a system (experimental chamber) is separated from the environment by the system boundaries; this is called the volume of the system, and described in practical language as big/small (derived from [[length]], [[height]]) or voluminous. Systems are defined at constant volume or constant [[pressure]]. For a pure sample S, the volume ''V''<sub>S</sub> of the pure sample equals the volume ''V'' of the system, ''V''<sub>S</sub> = ''V''. For [[sample]] s in a mixture, the ratio ''V''<sub>s</sub>·''V''<sup>-1</sup> is the nondimensional [[volume fraction]] ''Φ''<sub>s</sub> of sample s. Quantities divided by volume are [[concentration]]s of sample s in a mixture, such as [[count]] concentration ''C<sub>X</sub>'' = ''N<sub>X</sub>''·''V''<sup>-1</sup> [x·L<sup>-1</sup>], and amount of substance concentration ''C''<sub>B</sub> = ''n''<sub>B</sub>·''V''<sup>-1</sup> [mol·L<sup>-1</sup>]. Mass concentration is [[density]] ''ρ''<sub>s</sub> = ''m''<sub>s</sub>·''V''<sup>-1</sup> [kg·L<sup>-1</sup>]. In closed compressible systems (with a gas phase), the concentration of the gas increases, when pressure-volume [[work]] is performed on the system.
|info=[[BEC 2020.1]], [[Gnaiger MitoFit Preprint Arch 2020.4]]
|info=[[BEC 2020.1]], [[Gnaiger MitoFit Preprints 2020.4]]
}}
}}
__TOC__
__TOC__
Line 28: Line 28:
|-
|-
| 1 fL || 10<sup>-15</sup> L || 10<sup>-18</sup> m<sup>3</sup> || 1 µm<sup>3</sup> || 10<sup>-15</sup> kg || 10<sup>-12</sup> g || 1 pg
| 1 fL || 10<sup>-15</sup> L || 10<sup>-18</sup> m<sup>3</sup> || 1 µm<sup>3</sup> || 10<sup>-15</sup> kg || 10<sup>-12</sup> g || 1 pg
|-
| 1 aL || 10<sup>-18</sup> L || 10<sup>-21</sup> m<sup>3</sup> || 10<sup>-3</sup> µm<sup>3</sup> || 10<sup>-18</sup> kg || 10<sup>-15</sup> g || 1 fg
|}
|}



Latest revision as of 09:19, 25 January 2021


high-resolution terminology - matching measurements at high-resolution


Volume

Description

Volume V is a derived quantity based on the SI base quantity length [m] and is expressed in terms of SI base units in the derived unit cubic meter [m3]. The liter [L = dm3] is a conventional unit of volume for concentration and is used for most solution chemical kinetics. The volume V contained in a system (experimental chamber) is separated from the environment by the system boundaries; this is called the volume of the system, and described in practical language as big/small (derived from length, height) or voluminous. Systems are defined at constant volume or constant pressure. For a pure sample S, the volume VS of the pure sample equals the volume V of the system, VS = V. For sample s in a mixture, the ratio Vs·V-1 is the nondimensional volume fraction Φs of sample s. Quantities divided by volume are concentrations of sample s in a mixture, such as count concentration CX = NX·V-1 [x·L-1], and amount of substance concentration CB = nB·V-1 [mol·L-1]. Mass concentration is density ρs = ms·V-1 [kg·L-1]. In closed compressible systems (with a gas phase), the concentration of the gas increases, when pressure-volume work is performed on the system.

Abbreviation: V [m3]; 1 m3 = 1000 L

Reference: BEC 2020.1, Gnaiger MitoFit Preprints 2020.4

Communicated by Gnaiger E (2020-05-28) last update 2020-11-25

Conversions

Conversion table: liter [L], cubic meter [m3], and mass [kg] for a density ρH2O = 1 kg·dm-3. See SI prefixes.
Volume Volume Volume Volume Mass Mass Mass
[L] [L] [m3] [m3] [kg] [g] [g]
1 kL 103 L 1 m3 1 m3 103 kg 106 g 1 Mg
1 L 1 L 10-3 m3 1 dm3 1 kg 103 g 1 kg
1 mL 10-3 L 10-6 m3 1 cm3 10-3 kg 1 g 1 g
1 µL 10-6 L 10-9 m3 1 mm3 10-6 kg 10-3 g 1 mg
1 nL 10-9 L 10-12 m3 10-3 mm3 10-9 kg 10-6 g 1 µg
1 pL 10-12 L 10-15 m3 10-6 mm3 10-12 kg 10-9 g 1 ng
1 fL 10-15 L 10-18 m3 1 µm3 10-15 kg 10-12 g 1 pg
1 aL 10-18 L 10-21 m3 10-3 µm3 10-18 kg 10-15 g 1 fg

References

Bioblast linkReferenceYear
Bureau International des Poids et Mesures (2019) The International System of Units (SI). 9th edition:117-216. ISBN 978-92-822-2272-02019
Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg Commun 2020.2. https://doi.org/10.26124/bec:2020-00022020
Gnaiger E (2021) The elementary unit — canonical reviewer's comments on: Bureau International des Poids et Mesures (2019) The International System of Units (SI) 9th ed. https://doi.org/10.26124/mitofit:200004.v22021
Gnaiger E et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. https://doi.org/10.26124/bec:2020-0001.v12020

Keywords


Questions.jpg


Click to expand or collaps
Bioblast links: Concentration and pressure - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>



Questions.jpg


Click to expand or collaps



MitoPedia concepts: MiP concept, Ergodynamics